

AIRWORTHINESS BULLETIN

Flight Control Rod Ends

 AWB
 27-018
 Issue : 1

 Date :
 31 October 2013

1. Effectivity

All aircraft fitted with alternative part number rod ends part # MW-5TM-2 or MM-5TM-2. Or possibly any other alternative part number rod ends other than the original specified by the OEM.

11	HFE-5M KBD5-243 H5-5	Rod End Rod End (Alt PN) (V96579) Rod End (Alt PN) (V83086)	13	HME-5M KR5-MA KBDE-5-351 HE5-5 REM10ATC10ZM MS21242-S5	Rod End Rod End (Alt PN) Rod End (Alt PN) (V96579) Rod End (Alt PN) (V83086) Rod End (Alt PN) (V86174) Rod End (Alt PN)
	REF10ATC10Z	Rod End (Alt PN) (V21335)		MS21242-S5 HMR-5M	Rod End (Alt PN) Rod End (Alt PN) (V1DW08)

Figure 1

Alternative part number rod ends

2. Purpose

To alert all operators that alternative part number rod ends are not meeting the manufacturers design requirements for breakaway torque. An Australian operator was recently required to ground several aircraft following the discovery of excessive input requirements required for aileron control.

3. Background

Whilst an operator was conducting an investigation into aileron control stiffness they discovered rod ends were outside the nominated design requirements. The rod ends removed were not identifiable by part number or vendor, however, alternative part number rod ends MW-5TM-2 and MM-5TM-2 as specified in the M7 Aerospace SA227 Illustrated Parts Catalogue (Refer to Figure 3) have been found to require excessive load input to initiate movement known as "breakaway torque". The operator began a fleet review which highlighted that several rod ends were outside of the design limitations. (Refer to Figure 2 for general specifications for MS standard rod ends) To remedy the situation the operator sourced the original part number specified by the Type Certificate holder within the IPC.

The cause of the excessive stiffness within the rod ends is unknown however long term storage may be a contributing issue with the swelling of polymers within the bearing ends or incorrect manufacturing processes.

AIRWORTHINESS BULLETIN

Flight Control Rod Ends

AWB 27-018 Issue : 1 Date : 31 October 2013

				REMENTS	LOAD REQUI	TABLE II.		
	IN/LBS	NO LOAD BREAKAWA TORQUE	WEICHT MAX	AXIAL PROOF	FATIGUE LOAD LB	ULTIMATE STATIC	OSCILLATING LOAD LE	DASH NO.
	HAX	MIN	LB	LOAD LB		LOAT LB		
٦				1000	1470 (C)	2360	1470 (c)	- 3
	6	.5	.072	1000	2380	4860	3420	- 4
à.	à		.087	1100	2770 (d)	7180	3590	- 5
9	L.	1	.136	1660	3570	B550	5120	- 5
		1,	.183	1850	4800	12000	6130	- 7
		1 -	.278	2040	7680 (d)	19500	8370	- B
í.	No.	1	.4.24	24,30	9180	21900	10700	16
			.639	2810	11600	29300	13200	-12
٦		Aster .	.963	332C	13100	34,500	16500	-17
	16	2	2.546	131C	30400	80300	26600	-16

(C) BASED ON DOLT BENNING PATIONE STRENGTH LOD OVO DET

Figure 2

Sample of breakaway design load requirements.

Figure 3

SA227 IPC image Aileron Rod ends

AIRWORTHINESS BULLETIN

27-018

31 October 2013

Issue: 1

AWB

Date :

Flight Control Rod Ends

Figure 4

Image of Alternate Part Number Rod end

4. Recommendations

It is highly recommended that all rod ends be inspected and tested prior to use and at regular periodic intervals for adequate freedom of movement in accordance with manufacturers specifications. These rod ends may not be limited to the SA227 series or to aircraft or flight controls alone.

5. Reporting

All rod ends suspected of being outside of the required limitations should be reported to CASA via the SDR system.

6. Enquiries

Enquiries with regard to the content of this Airworthiness Bulletin should be made via the direct link e-mail address:

AirworthinessBulletin@casa.gov.au

or in writing, to:

Airworthiness and Engineering Standards Branch Standards Division Civil Aviation Safety Authority GPO Box 2005, Canberra, ACT, 2601